US009052956B2

L
a2 United States Patent 10) Patent No.: US 9,052,956 B2
Simitsis et al. 45) Date of Patent: Jun. 9, 2015
(54) SELECTING EXECUTION ENVIRONMENTS 8,271,999 B2* 9/2012 Jonesetal. 719/320
8,506,402 B2* 8/2013 Gaultetal. 463/40
. s e e s el e 8,627,451 B2* 1/2014 Walshetal. 726/16
(75) Inventors: Allelad.ls.S1m1t51s,.Sa.nta Clara, CA 20020122067 AL* 92000 Melamed ef al. 345763
(US); William K Wilkinson, San Mateo, 2003/0154158 Al* 82003 Martynetal. ...coccooero... 705/37
CA (US) 2005/0125772 Al* 6/2005 Kohno 717/104
2006/0004523 Al* 12006 MiNOorcccceevevevvvnnnens 702/19
73) Assionee: Hewlett-Packard Devel ¢ 2006/0158354 Al 7/2006 Aberg etal.
(73) Assignee Com e Lb. Howete OPTH;?US) 2007/0005283 Al* 1/2007 Blouin et al. 702/117
ompany, L.L., Houston, 2007/0101328 Al* 52007 Baronetal. 718/100
)) o) 2010/0318960 Al* 12/2010 Betheaetal. . . 717/106
(*) Notice: Subject to any disclaimer, the term of this 2011/0196775 Al* 82011 Gavin et al. 705/37
patent is extended or adjusted under 35 2013/0275323 Al* 10/2013 Chuangcccccooeee. 705/321
(21) Appl. No.: 13/599,869 Ko et al. “Execution Monitoring of Security-Critical Programs in
Distributed Systems: A Specification-based Approach”, 1997,
(22) Filed: Aug. 30, 2012 IEEE *
Dijkstra, “Hierarchical Ordering of Sequential Processes”, 1971,
(65) Prior Publication Data Springer-Verlag, pp. 115-138.*
Ranganathan et al., “Using Workflows to Coordinate Web Services in
US 2014/0068550 Al Mar. 6, 2014 Pervasive Computing Environments”, 2004, IEEE . *
Automatic Transformation From Graphical Process Models to
(51) Int.CL Executable Code, Hauser, R. et al, May 6, 2010, http://e-collection.
GO6F 9/44 (2006.01) library.ethz.ch/eserv/eth:1177/eth-1177-01.pdf, on pp. 1-22.
GOG6F 9/50 (2006.01)
(52) US.CL * cited by examiner
CPC GOG6F 9/5038 (2013.01); GOG6F 9/5055
(2013.01) Primary Examiner — Wei Zhen
(58) Field of Classification Search Assistant Examiner — Junchun Wu
USPC e 717/105 (74) Attorney, Agent, or Firm — Hewlett-Packard Patent
See application file for complete search history. Department
(56) References Cited (57) ABSTRACT
U.S. PATENT DOCUMENTS Disclosed herein are teghmq}les for selecting execution envi-
ronments. Each operation in a sequence of operations is
5,557,761 A * 9/1996 Chanetal.ccccoo...... 717/156 implemented using a selected execution environment. Each
5,920,721 A * 7/1999 Hunter etal. 717/159 operation is converted into code executable in the selected
?’ggg’%g g% H; 388; EIOZHMOViC etal. execution environment. If some operations in the sequence
5 5 ammes
7895573 B1* 22011 Bhargavaetal. 717/120 were %mplemented in dlfferent e?(ecutlon environments,
7.941,804 BL* 5/2011 Herington etal. 718/104 execution of the operations is coordinated.
8,046,202 Bl 10/2011 Yang et al.
8,146,081 B2* 3/2012 MIiZUNO ..oooovevveviiereiennnnas 718/1 19 Claims, 6 Drawing Sheets
200
(] ooR
il Fle Edt Toos View 06,08 20 2n2 21
Fiow Info[Flow xLM[SQL Code {Hadoop Coda] Coordination Code | 4
OPERATION T #binbesh
1 g expoﬂs‘kaoai-}lihDME;;‘lgmlhadmp
e S S Crmor HADOOP CONE DIASBLABOOP HOMEIcont
OPERATION 6 export JAVA_HOME=luseriavafiatest
DATA 2 ; export VERT_HOME=/opiivertica
SOURCE 9 export PATH_SJAVA_HOME/in SHADOOP, HOMEtbin
\ 10 xport CLASSPATH=RAVA HOME/ $HADOCP_ HOMEN $1A0
QPERATION ﬁ oo LD, LIERARY PATH-SPOADSLE LBRARY.PATH
- <, § oo
OPER?TION :g mfrSimp
£ gl m -7 $tmpDir 204
% §$d%o§§gow.pig > $iog
SODG;?;E g(g fsqsﬁ‘~l.?°?eevmdtnin < database-flow.sql >
28 ext O
« ~ | v

U.S. Patent Jun. 9, 2015 Sheet 1 of 6 US 9,052,956 B2

.-
<>

’H{h\ HQ\

NON-TRANSITORY
COMPUTER READABLE
MEDIUM

PROCESSCR

INTERFACE
MODULE
114

OPTIMIZER
MODULE
116

COORDINATION
MODULE
118

Fig. 1

US 9,052,956 B2

Sheet 2 of 6

Jun. 9, 2015

U.S. Patent

« / Y

2 B4

{xoe gz

e

< S e0)-252GRIBE > UIUDYUSA - BSA 67

apod s ¢ €F

A

B « Budmog-doopey > Bid mw

apos doopey ¥ 77

S 5
7 AU 4wt (7
GUig Y-l B

8i

Bop agyduny=Boy 74

Agydunj=tug gi

LBgAZ AU+ QUL G

71

HIVd ANYNEIT TISOROdS=H1Yd ANYEEIT GTuede ¢y
WONIROH dOOOYHS=HLYJSBY 10 Did Hodxe 7}

51

OYHS U INOH JOOUYHEOHINOH YAYPS=HIYJSSY) Modke ¢
UYIROH dOOOYHE WY IWOH YAYPS H1Yd Hodxe

EaLBnoETMOH LA Hodxs
jEsjeyRaBluBST= ANOH YAYT Yodxa

MOYIROH AOOOVHE=HIG 40T dO0aYH Hodxs
{5 (00 0DopRYBRIoYEINOH 1d Modka
donpRyswt=IROH " JOOOYH Hodses

45eg/I0/4

b Hlew o 03 0 G0 e QD Y

apog) uoeLpiooy ppog) doopeH| apog TS WX Mold] oju| Mol

304008
Yiva

YivQ
LNdifo

NOILYY3dO

~_

/.//f

.

o
o~
o

NOLLVYHEdO

£

4/ Fodn0s

4
NOILYH3dO vAva

b

//w \)

\.
NOILYH340

piz- 212 oz’ ez’ a0z

malf, siool w3 9 -

0

¢

4

U.S. Patent Jun. 9, 2015 Sheet 3 of 6 US 9,052,956 B2

t
o

302~

SELECT AN EXECUTION ENVIRONMENT
IN WHICH TO IMPLEMENT EACH
OPERATION OF A SEQUENCE OF

OPERATIONS

l

CONVERT EACH OPERATION INTO
CODE EXECUTABLE IN THE
EXECUTION ENVIRONMENT

304~

e ARE SOME
OPERATIONS IN THE
SEQUENCE IMPLEMENTED IN
EXECUTION ENVIRONMENTS
DIFFERENT THAN OTHER
OPERATIONS
o

308~

COORDINATE EXECUTION
OF THE OPERATIONS

Fig. 3

US 9,052,956 B2

Sheet 4 of 6

Jun. 9, 2015

U.S. Patent

2 NOUYY3dO —» { 0EY vy |

/4@ MJ

_/

 NOLLYY3dO —» @

p 614

4%

Choy k‘wu

®® OO E

U.S. Patent Jun. 9, 2015 Sheet 5 of 6 US 9,052,956 B2

506~ 507 508~
\)

&4 &9 €3

501~4 Of >¥(] X
. \\

o~ o, | PV [y Ty
503 ~L 03 X X X
504-—f Oy X X
505~ Os X X
508~y g 0.8 1.0 0.4

Fig. 5

US 9,052,956 B2

Sheet 6 of 6

Jun. 9, 2015

U.S. Patent

9 ‘b1

{068 Ul BUIE) SMOL 01 JO} SIUBLIBA MDY

TSMOI G0 W
sl 90 3

H 1

0000F 000SE 0000E 000SZ 0000T 00084 0000L 000S G

09

L 3-3ud
Zo-w
1do-zo-nu
do- o~
1bs
u-ths
do-u-bs
1do-pbs
jdo-40-1 gy
jdo-12-¢y
ydo-10-zay
3do-10-p0y
o, 0-7aY
1do-z2-204
3do-Z2-pau
ydo-Z0-g

{D-Jd

1bs

u-|bs

1o-zo-1qy

Z9-us

Wo-u-ibs

Wo-hs

1do-2o-z2ay

1d0-1, 04U

0-70-Jw

o-12-104

10-20-40y

“TEROI 50 M
“SMOL §0L

ydo-gzo-gqu

1do-12-¢ay

Jdo-10-p0y

H !

jdo-12-70y

000SE 0000€ 000ST 0000Z 000SL 0000 000S ©

09

US 9,052,956 B2

1
SELECTING EXECUTION ENVIRONMENTS

BACKGROUND

Many organizations maintain heterogeneous systems of
information technology infrastructure comprising assorted
data formats originating from multiple sources. For example,
an organization may use a data warehouse to manage struc-
tured data and a map-reduce engine to manage semi-struc-
tured or unstructured data. Data warehouses may provide
tools to extract, transform, and load data (“ETL tools™). Some
ETL tools permit a user to specify operations that process data
from multiple sources or to perform other functions. Such a
tool may include a graphical user interface (“GUI”) contain-
ing an object oriented model of the entities gathered from data
sources for ETL processing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example system in accor-
dance with aspects of the present disclosure.

FIG. 2 is a working example of a graphical user interface in
accordance with aspects of the present disclosure.

FIG. 3 is a flow diagram of an example method in accor-
dance with aspects of the present disclosure.

FIG. 4 is an example data structure used for selecting
execution environments in accordance with aspects of the
present disclosure.

FIG. 5 is an example of an alternate data structure used for
selecting execution environments in accordance with aspects
of the present disclosure.

FIG. 6 is a bar graph illustrating the performance of various
example execution environments.

DETAILED DESCRIPTION

As noted above, ETL tools allow users to specify a
sequence of operations that process data from various sources
or that perform other types of functions. These tools may also
convert user specified operations into executable code. How-
ever, as infrastructure and data become more diverse, an
entire sequence of operations may not be suitable for just one
execution environment. While some operations may be
implemented in multiple execution environments, other
operations may execute more efficiently in a particular envi-
ronment. For example, in one operation, a map reduce cluster
ona cloud network may be better suited for analyzing log files
and, in a second operation, standard query language (“SQL”)
may be better suited for joining the results of the analyses
with a data base table. As such, binding an entire process to
one execution environment may result in suboptimal execu-
tion thereof.

In view of the foregoing, disclosed herein are a system,
non-transitory computer readable medium, and method to
select execution environments for each operation in a
sequence. In one example, each operation in a sequence of
operations may be implemented using a selected execution
environment. In a further example, each operation may be
converted into code executable in the selected execution envi-
ronment. In yet a further example, if some operations in the
sequence were implemented in different execution environ-
ments, execution of the operations may be coordinated. In
another aspect, an execution environment may be defined as
a context in which an operation is executed, such as an oper-
ating system, a database management system, a map reduce
engine, or an operating system coupled with a hardware
specification.

10

15

20

25

30

35

40

45

50

55

60

65

2

The system, non-transitory computer readable medium,
and method disclosed herein may convert each operation of a
process into code executable in different execution environ-
ments. As such, rather than binding every operation to one
execution environment, an environment most suitable for
each operation may be selected. As will be discussed further
below, an execution environment may be selected based on a
metric associated therewith. Furthermore, the techniques dis-
closed herein may accommodate operations only executable
in particular environments. The aspects, features and advan-
tages of the present disclosure will be appreciated when con-
sidered with reference to the following description of
examples and accompanying figures. The following descrip-
tion does not limit the application; rather, the scope of the
disclosure is defined by the appended claims and equivalents.

FIG. 1 presents a schematic diagram of an illustrative com-
puter apparatus 100 for executing the techniques disclosed
herein. The computer apparatus 100 may include all the com-
ponents normally used in connection with a computer. For
example, it may have a keyboard and mouse and/or various
other types of input devices such as pen-inputs, joysticks,
buttons, touch screens, etc., as well as, a display, which could
include, for instance, a CRT, LCD, plasma screen monitor,
TV, projector, etc. Computer apparatus 100 may also com-
prise a network interface (not shown) to communicate with
other devices over a network.

The computer apparatus 100 may also contain a processor
110, which may be any number of well known processors,
such as processors from Intel® Corporation. In another
example, processor 110 may be an application specific inte-
grated circuit (“ASIC”). Non-transitory computer readable
medium (“CRM”) 112 may store instructions that may be
retrieved and executed by processor 110. The instructions
may include an interface module 114, an optimizer module
116, and a coordination module 118. In one example, non-
transitory CRM 112 may be used by or in connection with any
instruction execution system that can fetch or obtain the logic
from non-transitory CRM 112 and execute the instructions
contained therein. Non-transitory computer readable media
may comprise any one of many physical media such as, for
example, electronic, magnetic, optical, electromagnetic, or
semiconductor media. More specific examples of suitable
non-transitory computer-readable media include, but are not
limited to, a portable magnetic computer diskette such as
floppy diskettes or hard drives, a read-only memory
(“ROM”™), an erasable programmable read-only memory, a
portable compact disc or other storage devices that may be
coupled to computer apparatus 100 directly or indirectly.
Alternatively, non-transitory CRM 112 may be a random
access memory (“RAM”) device or may be divided into mul-
tiple memory segments organized as dual in-line memory
modules (“DIMMSs”). The non-transitory CRM 112 may also
include any combination of one or more of the foregoing
and/or other devices as well. While only one processor and
one non-transitory CRM are shown in FIG. 1, computer appa-
ratus 100 may actually comprise additional processors and
memories that may or may not be stored within the same
physical housing or location.

The instructions residing in non-transitory CRM 112 may
comprise any set of instructions to be executed directly (such
as machine code) or indirectly (such as scripts) by processor
110. In this regard, the terms “instructions,” “scripts,” and
“applications” may be used interchangeably herein. The com-
puter executable instructions may be stored in any computer
language or format, such as in object code or modules of
source code. Furthermore, it is understood that the instruc-
tions may be implemented in the form of hardware, software,

US 9,052,956 B2

3

or a combination of hardware and software and that the
examples herein are merely illustrative.

As will be described in more detail below, the instructions
in interface module 114 may cause processor 110 to display a
GUI that permits users to specify a sequence of operations
and to request conversion thereof into executable code. Opti-
mizer module 116 may convert each operation into code
executable in a selected execution environment. In one
example, selection of the execution environment may be at
least partially based on resources consumed by each opera-
tion when executed therein. Coordination module 118 may
ensure the operations execute in a proper sequence, when
some operations are implemented in execution environments
different than other operations. In one example, optimizer
module 116 may determine that the sequence is more efficient
in an order different than that specified by the user. Selection
of the execution environment may be further based on the
resources consumed when the sequence of operations is coor-
dinated across different execution environments.

FIG. 2 illustrates an example GUI 200 that may be dis-
played in accordance with the instructions of interface mod-
ule 114. The illustrative GUI 200 may have a left panel 202 in
which auser may specify a sequence of operations by clicking
and dragging icons representative of operations or data
sources. In this example, left panel 202 displays four specified
operations. Operation one and operation four are each shown
having an external data input. Operations two thru four are
each shown receiving input from a preceding operation.
Operation four is also shown producing a final output of the
sequence. The right panel 204 may display information asso-
ciated with a tab positioned above the panel. In this example,
right panel 204 is currently displaying information associated
with coordination tab 214. Upon clicking coordination tab
214, right panel 204 may display executable code that coor-
dinates each operation in the process displayed in left panel
202, when some operations are implemented in different
execution environments.

A user clicking on flow information tab 206 may cause
meta-data associated with the specified operations to be
shown in right panel 204. A click on flow information tab 206
may also cause other information to be shown, such as a graph
representation of the sequence of operations. A user clicking
on xLLM tab 208 may cause customized extendable markup
language (“XML”) code to be displayed in right panel 204.
Such code may represent the sequence of operations specified
in left panel 202. The “xI.LM” code may capture information
regarding data structures used to implement the sequence of
operations (e.g., nodes and edges of a graph or hierarchical
tree of interlinked nodes). The “xLLM” code may also capture
design meta-data (e.g., functional and non-functional
requirements or resource allocation). In another example, the
“xLLM” code may capture operational properties (e.g., opera-
tion type, data schema, operation statistics, parameters or
expressions for implementing an operation type, or execution
environment details). A user clicking on standard query lan-
guage (“SQL”) tab 210 may cause the display of SQL code in
right panel 204. Such SQL code may be used to implement
some operations in left panel 202 as determined by optimizer
module 116. A user clicking on Hadoop tab 212 may cause
Hadoop code to be displayed in right panel 204. As with the
aforementioned SQL code, optimizer module 116 may deter-
mine that some operations specified in left panel 202 should
be implemented in Hadoop. As such, once the execution
environments are selected, GUI 200 may display tabs that
permit a user to view or edit the generated code executable
therein.

20

25

40

45

4

Working examples of the system, method, and non-transi-
tory computer-readable medium are shown in FIGS. 3-5. In
particular, FIG. 3 illustrates a flow diagram of an example
method 300 for selecting execution environments. FIGS. 4-5
each show a different working example in accordance with
the techniques disclosed herein.

As showninblock 302 of FIG. 3, an execution environment
in which to implement each operation in a sequence of opera-
tions may be selected. In one example, the selection may be
triggered by a request to convert a sequence of user-specified
operations into executable code. Such a request may be ini-
tiated by a user via GUI 200. Selection of the execution
environment may be based on a metric associated therewith.
The metric may be partially based on resources consumed by
each operation when implemented in the execution environ-
ment and/or resources consumed when the sequence of
operations is coordinated across different execution environ-
ments. Such metrics may be stored as standing data that may
be configured in advance by an administrator. Furthermore,
such metrics may be derived by executing benchmark pro-
grams in each candidate execution environment.

Referring again to FIG. 3, each operation may be converted
into code executable in the execution environment selected
for each operation, as shown in block 304. As will be dis-
cussed in more detail below, the metric associated with each
execution environment may be processed using various data
structures (e.g., graphs, hierarchical trees, etc.). In block 306,
it may be determined whether some operations in the
sequence are implemented in execution environments differ-
ent than other operations. If it is determined that some opera-
tions in the sequence are implemented in execution environ-
ments different than other operations, execution of the
operations may be coordinated, as shown in block 308.

FIG. 4 shows an example hierarchical data structure of
interlinked nodes that may be used to determine an execution
environment for each operation. Root node 401 may repre-
sent the start of the process and each level in the hierarchical
tree may be associated with an operation in the sequence or
data processed thereby. A node in the tree may represent an
execution environment that is a candidate for executing the
operation corresponding to each level. Alternatively, a nodein
the tree may represent an execution environment in which a
data source may be loaded. In the example of FIG. 4, the first
levelin the tree represents a data source. Each node in this first
level (i.e., nodes 404 and 406) represents an execution envi-
ronment that is a candidate for storing the type of data corre-
sponding to the first level. Each link associating a pair of
nodes in the tree may represent a cost of transitioning between
nodes (i.e., the cost of transitioning from one environment to
another). As such, each link may represent a metric associated
with each candidate execution environment. The link C, may
represent the cost of loading the data into execution environ-
ment 404 and C, may represent the cost of loading the data
into execution environment 406. A path from the root node to
a leaf node may represent a combination of execution envi-
ronments that may be used to implement the sequence of
operations.

The second level in the hierarchical tree of FIG. 4 may
represent the first operation in the sequence. Nodes 408, 410,
412, and 414 are shown as candidate environments for execut-
ing this first operation. These second level nodes each have a
cost metric associated therewith, namely C;, C,, Cs, and Cq
respectively. The second operation has eight candidate execu-
tion environments (i.e., 416-430) each associated with a cost
C, thru C,, respectively. In one example, optimizer module
116 may select the least cost path of interlinked nodes from
the root node to a leaf node. Therefore, the path may include

US 9,052,956 B2

5

different execution environments or may include the same
execution environment, ifit is determined that executing each
operation in the same environment has the least cost than
other execution paths.

FIG. 5 shows an alternative representation that may be used
to select an execution environment for each operation. In one
example, the matrix data structure shown in FIG. 5 may be
generated from a hierarchical tree of interlinked nodes after
removing or “pruning” sections of the tree whose aggregate
cost exceed a predetermined threshold. In this example, each
row 501-505 may represent an operation and each column
506-508 may represent a candidate execution environment.
Each cell flagged with an “X” may indicate that the execution
environment corresponding to the column thereof is a candi-
date for executing the operation corresponding to a given row.
Each arrow projecting from the cell [e,, O,] may represent a
cost of transitioning from an implementation of O, in execu-
tion environment e, to an implementation of O, in another
execution environment. The cost of transitioning from [e,,
0O,]to[e,, O,] is shown as infinity, since e, is not a candidate
for executing operation O,. However C, may represent the
cost of transitioning from [e;, O,] to [e,, O,] and C, may
represent the cost of transitioning from [e,, O,] to [e;, O,].

In another example, the selection of an execution environ-
ment may be at least partially based on whether an execution
environment was previously selected to execute more opera-
tions in the sequence than any other candidate execution
environment. In the example matrix data structure of FIG. 5,
each column of row 509 depicts a ratio of operations O, thru
O, that were previously executed in the environment corre-
sponding to each column. In this example, row 509 indicates
that execution environment e, was previously used to execute
eighty percent of the operations in the sequence; execution
environment e, was previously used to execute one hundred
percent of the operations in the sequence; and, execution
environment e, was previously used to execute forty percent
of the operations in the sequence. Thus, if an execution envi-
ronment is undeterminable based on a preferred metric, an
execution environment previously selected to execute more
operations than any other candidate may be selected instead.
In the example in FIG. 5, e, may be selected since it was
previously used to execute one hundred percent of the
sequence. However, in another example, other metrics may
considered if the execution environment is undeterminable
based on a preferred metric, such as licensing costs, total
number of operations executable therein, utilization thereof,
etc.

FIG. 6 depicts two example graphs 602 and 604 that dem-
onstrate the differences in execution times between various
example execution environments. Execution environments
prefixed with “mr” represent map reduce execution environ-
ments; the environments prefixed with “sql” represent SQL
execution environments; and, the environments prefixed with
“hb” represent a hybrid of different execution environments.
These metrics may be used as standing data that may be
configured in advance by an administrator. Each bar in graph
602 corresponds to an execution environment, and the length
of each bar represents a total time in seconds of executing a
sequence of operations on 10 gigabyte rows of data plus the
time of loading the data, when executed in a corresponding
execution environment. Thus, each bar in graph 602 assumes
the data is stored outside the execution environment corre-
sponding to each bar. The white portion of each bar in graph
602 represents the cost of loading the data and the black
portion of each bar represents the cost of executing the opera-
tions. In graph 604, the length of each bar therein represents
a total time in seconds of executing a sequence of operations

5

10

15

20

25

30

40

45

50

55

60

65

6

on 10 gigabyte rows of data plus the time to forward any data
to a subsequent execution environment, when the sequence is
executed in an environment corresponding to each bar. Thus,
each bar in graph 604 assumes the data is stored in a corre-
sponding execution environment and accounts for data for-
warded to a subsequent operation. The white portion of each
bar in graph 602 represents the cost of forwarding the data and
the black portion of each bar represents the cost of executing
the operations.

Advantageously, the foregoing system, method, and non-
transitory computer readable medium convert a process with
different operations into code executable in different execu-
tion environments. Instead of executing an entire process in
one environment, various execution environments may be
used that execute a given operation most efficiently. In this
regard, the overall process may be optimized and end users of
the resulting process may experience better performance.

Although the disclosure herein has been described with
reference to particular examples, it is to be understood that
these examples are merely illustrative of the principles of the
disclosure. It is therefore to be understood that numerous
modifications may be made to the examples and that other
arrangements may be devised without departing from the
spirit and scope of the disclosure as defined by the appended
claims. Furthermore, while particular processes are shown in
a specific order in the appended drawings, such processes are
not limited to any particular order unless such order is
expressly set forth herein; rather, processes may be performed
in a different order or concurrently and steps may be added or
omitted.

The invention claimed is:

1. A system comprising:

an interface module to permit a sequence of operations to
be specified by a user;

an optimizer module to implement each operation in a
selected execution environment and to convert each
operation into code executable therein;

a module to determine an execution environment from a
plurality of candidate execution environments in which
to implement each operation such that selection of the
execution environment is based at least partially on a
metric associated therewith,

wherein the metric associated with the execution environ-
ment is at least partially based on resources consumed
by each operation when implemented in the execution
environment and resources consumed when the
sequence of operations is coordinated across different
execution environments;

wherein the selected execution environment is represented
by a node of a hierarchical tree, the tree including a
plurality of nodes representing candidate execution
environments that are candidates for executing each
operation;

and a coordination module to ensure the operations execute
in the sequence specified by the optimizer module when
some operations are implemented in execution environ-
ments different than other operations in the sequence.

2. The system of claim 1, wherein selection of the execu-
tion environment is at least partially based on resources con-
sumed by each operation when executed therein.

3. The system of claim 2, wherein selection of the execu-
tion environment is further based on resources consumed
when the sequence of operations is coordinated across differ-
ent execution environments.

4. The system of claim 1, wherein selection of the execu-
tion environment is at least partially based on whether the

US 9,052,956 B2

7

execution environment was previously selected to execute
more operations in the sequence than any other candidate
execution environment.

5. The system of claim 1, wherein the plurality of nodes of
the hierarchical tree include interlinked nodes to represent the
plurality of execution environments that are candidates for
executing each operation.

6. The system of claim 5, wherein a level in the hierarchical
tree of interlinked nodes is associated with an operation in the
sequence or data processed thereby and wherein each node
within the interlinked nodes positioned at each level repre-
sents a candidate execution environment.

7. The system of claim 6, wherein each link associating a
pair of nodes in the hierarchical tree of interlinked nodes
represents a cost of transitioning between the pair of nodes
and the optimizer module is further to select a least cost path
of interlinked nodes.

8. A non-transitory computer readable medium having
instructions therein which, if executed, cause a processor to:

read a request to convert a sequence of operations into

executable code;

determine an execution environment from a plurality of

candidate execution environments in which to imple-
ment each operation such that selection of the execution
environment is based at least partially on a metric asso-
ciated therewith,

wherein the metric associated with the execution environ-

ment is at least partially based on resources consumed
by each operation when implemented in the execution
environment and resources consumed when the
sequence of operations is coordinated across different
execution environments;

wherein the determined execution environment is repre-

sented by a node of a hierarchical tree, the tree including
a plurality of nodes representing the plurality of candi-
date execution environments;

generate code executable in the execution environment

selected for each operation in the sequence; and if some
operations are implemented in execution environments
different than other operations in the sequence, coordi-
nate execution of the sequence of operations across dif-
ferent execution environments.

9. The non-transitory computer readable medium of claim
8, wherein the metric associated with the execution environ-
ment is at least partially based on whether the execution
environment was previously selected to execute more opera-
tions in the sequence than any other candidate execution
environment.

10. The non-transitory computer readable medium of claim
8, wherein the plurality of nodes of the hierarchical tree
include interlinked nodes to represent the plurality of candi-
date execution environments, such that the plurality of can-
didate execution environments are candidates for executing
each operation.

11. The non-transitory computer readable medium of claim
10, wherein a level in the hierarchical tree of interlinked
nodes is associated with an operation in the sequence or data
processed thereby and wherein each node within the inter-
linked nodes represents a candidate execution environment.

12. The non-transitory computer readable medium of claim
11, wherein each link associating a pair of nodes in the hier-

5

10

15

20

25

30

35

40

45

50

55

60

8

archical tree of interlinked nodes represents a cost of transi-
tioning between the pair of nodes.

13. A method comprising:

displaying, using a processor, an interface that allows a

user to specify a series of operations associated with
data;

reading, using the processor, a request from the user via the

interface to convert a sequence of operations into execut-
able code;

selecting, using the processor, an execution environment

from a plurality of execution environments in which to
implement each operation in the sequence;

Determining, using the processor, an execution environ-

ment from a plurality of candidate execution environ-
ments in which to implement each operation such that
selection of the execution environment is based at least
partially on a metric associated therewith,

wherein the metric associated with the execution environ-

ment is at least partially based on resources consumed
by each operation when implemented in the execution
environment and resources consumed when the
sequence of operations is coordinated across different
execution environments;

wherein the selected execution environment is represented

by a node of a hierarchical tree, the tree including a
plurality of nodes representing the plurality of candidate
execution environments;

converting, using the processor, each operation into code

executable in the selected execution environment; and if
some operations are implemented in execution environ-
ments different than other operations in the sequence,
coordinating, using the processor, the sequence of
operations across different execution environments.

14. The method of claim 13, wherein selection of the
execution environment is at least partially based on resources
consumed by each operation when implemented in the execu-
tion environment and resources consumed when the sequence
of operations is coordinated across different execution envi-
ronments.

15. The method of claim 13, wherein selection of the
execution environment is at least partially based on whether
the execution environment was previously selected to execute
more operations in the sequence than any other candidate
execution environment.

16. The method of claim 13, further comprising arranging,
using the processor, the plurality of nodes of the hierarchical
tree into interlinked nodes to represent the plurality of candi-
date execution environments, such that the plurality of can-
didate execution environments are candidates for executing
each operation.

17. The method of claim 16, wherein a level in the hierar-
chical tree of interlinked nodes is associated with an operation
in the sequence or data processed thereby and wherein each
node within the interlinked nodes represents a candidate
execution environment.

18. The method of claim 17, wherein each link associating
a pair of nodes in the hierarchical tree of interlinked nodes
represents a cost of transitioning between the pair of nodes.

19. The method of claim 18, further comprising, selecting,
using the processor, a least cost path of interlinked nodes.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,052,956 B2 Page 1 of 1
APPLICATION NO. : 13/599869

DATED s June 9, 2015

INVENTORC(S) : Alkiviadis Simitsis et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In The Claims

In column 8, line 13, in Claim 13, delete “Determining” and insert -- determining --, therefor.

Signed and Sealed this
Fifteenth Day of December, 2015

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

